
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.

Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a

nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government

purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S.

Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution,

however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness

Enumeration of Increasing Boolean Expressions and

Alternative Digraph Implementations for Diagnostic Applications

Phillip D. Stroud
Los Alamos National Laboratory unrestricted report1 LAUR-03-3384

August 2, 2003

ABSTRACT

 In classification and diagnostic applications, items are categorized according to observations of item

attributes. A classification scheme specifies which observations are made, and in what order. The
classification scheme determines how, after each observation, an item is either assigned to a category, or

subjected to another observation. In real systems, observations have cost, and miscategorization has cost. In

this paper, algorithms are presented to enumerate classification schemes. This enumeration is a prerequisite

step for computational optimization of classification schemes. This analysis is directly applicable to the
optimization of medical and other diagnostic applications, as well as to surveillance and classification

systems.

 In a simple but generalizable abstraction of a diagnostic system, each item has n binary attributes, and
the items are to be classified into two categories. The diagnostic system can be viewed as a binary decision

tree (BDT) with two output terminals. The BDT implements a selection expression, which specifies which

entity attribute states are assigned to each output category. The BDT also implements the classification

scheme giving the combination and sequence of observations applied to each entity.
 In an important subclass of diagnostic systems, each attribute contributes to a single decision metric,

and increasing selection expressions are of primary interest. The number of increasing selection expressions

is a small fraction of the total number of selection expressions. An algorithm is presented to generate the set
of increasing selection expressions for a given number of nodes. The algorithm makes use of a partial

ordering relationship among the entity states, and does not require examination of all possible selection

expressions. An algorithm is also presented for enumerating all of the BDT’s that implement a given
increasing selection expression. For a four-attribute observation system, there are 114 distinct increasing

selection expressions that can be implemented through a total of 11808 BDT’s.

 An application case is developed in which the fitness of a classification scheme, as implemented in a

BDT, can be computed as a cost function. The methodology to explore the space of classification schemes
based on enumeration of feasible BDT’s is demonstrated.

Keywords: binary decision tree, monotonic Boolean function, data fusion.

1 Published in Proceedings Volume IV, Computer, Communication and Control Technologies, ed. H. Chu, J.

Ferrer, T. Nguyen, Y. Yu, pp. 328-333, International Institute of Informatics and Systematics, Orlando, FL

(August, 2003). This work was selected as Best Paper of the Models and Algorithms III session at the
International Conference on Computer, Communication and Control Technologies CCCT ’03, held in

Orlando, July 31-Aug 2, 2003.

 2

1. INTRODUCTION

 We consider the class of problems in which there is a stream of items, each of which is to be

classified into one of two categories. These categories are designated 0 and 1. In a quality control application,
for example, properly made items are category 0, while defective items are category 1. In a smuggling

surveillance application, legitimate containers/vehicles are category 0 while containers/vehicles hiding

contraband are category 1. In a medical diagnostic application, a person without a particular disease is

category 0 while a person with the disease is category 1. While each item has an actual category, the
classification system also gives each item an assigned category. There are two types of misclassifications:

type-one error (false positive – assigning an “ok” object to category 1), and type-two error (false negative –

assigning a “bad” object to category 0). Both types of misclassification have associated costs.
 Each item has n binary observable attributes that are correlated with its actual category. Attribute

values are unknown prior to observation. Each attribute can be observed with an appropriate sensor.

Observations have costs. For each of the 2n possible input states, the fractions of items with actual categories
0 and 1 are estimated from historical data. In applications of interest, items are only rarely actually in category

1, a false negative is much more costly than a false positive, and a false positive costs more than observing all

attributes.

 The problem is to find the classification scheme (i.e. the best combination and sequence of
observations) that minimizes the combined cost of observations, false negatives and false positives. For cases

with one, two, or three attributes, the possible classification schemes can be enumerated manually. The scope

of this work includes development of an algorithmic formulation to enumerate the space of alternative
classification schemes for four or five attributes. This enumeration is a preliminary to the application-

dependent process of optimizing classification schemes. For cases with large dimension (many attributes), the

four-attribute enumeration methodology will lead to development of operators for generating new
“neighboring” classification schemes from existing schemes, so that methods of evolutionary computing can

be applied to the search for good classification schemes.

 In Section 2, a representation is defined for the state of the entities. In Section 3, the representation of

classification schemes is developed in terms of binary decision trees (BDT’s). There are two general
approaches that can be used to explore the space of alternative classification schemes. First, the space of

alternative BDT’s can be enumerated, and various constraints applied to determine which are feasible for the

problem at hand. This approach is inefficient, as there are a very large number of alternative BDT’s. A second
approach divides the problem into two parts. The first part specifies the selection logic that determines the

mapping from input state to category assignment. The second part determines the best BDT that implements

the given selection logic. In Section 4, a representation for selection expressions is developed. Section 5

presents the notion of increasing selection expressions, and Section 6 further identifies feasible selection
expressions and gives an algorithm for enumerating these. In Section 7, an algorithm is given for enumerating

the BDT’s that implement a given feasible selection expression. In Section 8 presents a demonstration of the

methodology for an example classification system, using four attributes.
 There is a large literature concerned with Boolean functions.1 Of relevance to this work is the

literature on canonical forms of Boolean functions,2 3 4 5 6 graphical representations of Boolean functions,7 8

inference of a Boolean function from a set of observed input state – output assignment pairs,9 10 11 12
identifying the important attributes13 of a Boolean expression, and generating a neighborhood of similar

Boolean expressions.14 15 Systematic classifications of families of Boolean functions have been published for

up to four attributes.16 There is a small body of literature concerning monotonic Boolean functions.17 18 19 20 21

Although this work does not capitalize on them, several statistical theorems concerning monotonic Boolean
functions (e.g. FKG equality, Janson’s inequality, Lovasz Local Lemma) can be used to bound the

performance for classification decision analysis with multiple objectives.22 Several authors note that

monotonic Boolean functions can be used to effectively model human learning.23 24 Several authors have
looked at counting and classifying the monotonic Boolean functions.25 26 27 28 Several papers discuss various

algorithmic approaches to identifying monotonic Boolean functions.29 30 31 32

 3

 There is also a large literature on BDT’s.33 34 35 36 This paper examines the novel notion of

enumerating the BDT’s that implement monotonic increasing selection expressions, for the purpose of
optimizing the BDT in applications where observations and misclassifications have costs.

 The general case allows an arbitrary number of values for each attribute, and multiple terminals. We

concentrate on the simpler binary case, keeping as a design principle that the results will generalize to multi-

category systems, and to cases where several sensors may provide independent, correlated, or partially
correlated readings of the same attribute.

2. REPRESENTATION OF INPUT STATES

 The n attributes can arbitrarily be assigned indices in the range of 0 to n-1, and can be designated as

a0 through an-1. An input state is specified by fixing the value that would be or has been observed for each
attribute. An input state can thus be represented as a string of n bits. The convention used here is that the left-

most (most significant) bit designates the value of the highest index attribute, an-1. The right-most bit

designates the value of attribute a0. In this notation, each of the 2n possible input states is represented by a

binary n-bit number in the range 0 to 2n-1. The bit values of the binary representation of the number translate
directly to the attribute values. Each input state can also be represented by the equivalent decimal integer, j,

obtained by a binary to decimal conversion.

 For systems with two attributes, there are four possible input states, which can be explicitly
represented as (a1=0, a0=0), (a1=0, a0=1), (a1=1, a0=0) and (a1=1, a0=1). In the equivalent binary

representation, these four states are a1a0 = 002, 012, 102, and 112. The subscript notation NB designates that N

represents a number in base B, and the default with no subscript is base ten. Likewise, in the equivalent

decimal representation, the four possible input states are designated j = 2i ai
i= 0

n 1

 = 0, 1, 2, and 3. The input

states for the three- and four-attribute systems are enumerated in Tables 1 and 2.

j j2 a2 a1 a0

0 0002 0 0 0

1 0012 0 0 1

2 0102 0 1 0

3 0112 0 1 1

4 1002 1 0 0

5 1012 1 0 1

6 1102 1 1 0

7 1112 1 1 1

Table 1. Enumeration of the 8 input states for a three-attribute system.

j j2 a3 a2 a1 a0

0 00002 0 0 0 0

1 00012 0 0 0 1

2 00102 0 0 1 0

3 00112 0 0 1 1

4 01002 0 1 0 0

5 01012 0 1 0 1

6 01102 0 1 1 0

7 01112 0 1 1 1

8 10002 1 0 0 0

9 10012 1 0 0 1

10 10102 1 0 1 0

11 10112 1 0 1 1

12 11002 1 1 0 0

13 11012 1 1 0 1

14 11102 1 1 1 0

15 11112 1 1 1 1

Table 2. Enumeration of the 16 input states for a four-attribute system.

 4

3. BINARY DECISION TREE REPRESENTATION

 The logical combination and sequence of observations can be represented most directly as a directed

acyclic graph. For the binary case, this graph is equivalent to a binary decision tree. The nodes in the BDT

represent sensor observations. A sensor may appear multiple times in the graph, but only once in any path
through the tree. Two edges exit from each node, one taken when the observed attribute has a value of 1, the

other taken for an observed value of 0. These edges may lead to another sensor or to one of two terminals.

The terminals correspond to the output categories. The root node represents the initial observation applied to
completely uncharacterized items. The items enter the graph at the root node, follow edges through various

vertices, and exit the graph at a terminal.

 A generic BDT skeleton is shown in Fig. 1. Each node has a designated index. The root node is
designated as index 0. An entity that gets to node i will be sent to node 2i+1 if the sensor at node i observes a

0 value, and to node 2i+2 if it observes a 1 value. If there are n attributes, the largest possible number of

sensor nodes in the BDT is 2n-1.

Fig. 1. Binary decision tree node indexing scheme

 A node can hold a sensor or a terminal. If a node holds a terminal, the tree is truncated there: that

node would be childless. If a node holds a sensor, then the tree must extend at least through the two children

of the node. Nodes with indices in {2n-1, ..., 2n+1-2}, if they are defined, contain only terminals, because the
paths to these nodes already contain all n sensors.

 An example BDT for a four-attribute system is shown in Fig. 2. In the classification scheme

represented in this figure, each item is initially observed with sensor 0, as shown by the notation “a0” in the
root node. If sensor 0 gives a positive observation, the object is then examined by sensor 3. The item is

classified as category 1 or 0 depending on whether sensor 3 gives a positive or negative result. If, on the other

hand, the item gave a negative reading from sensor 0, it would take a different path through the tree, next

being observed by sensor 1. If sensor 1 gives a negative result, the object is assigned to category 0, otherwise
it is sent to sensor 2. Likewise, if sensor 2 gives a negative result, the object is assigned to category 0,

otherwise it is sent to sensor 3. The logic implemented by this BDT assigns items to category 1 if sensor 3 and

sensor 0 are both positive, or if sensors 1, 2 and 3 are all positive. However, if sensor 0 is positive,
observations are not made by sensor 1 or sensor 2.

Figure 2. Example Binary Decision Tree

7 8 9 1011 12 1314

3 4 5 6

1

0

2

0 1

0 a3

0

a1

a2 0

a3

1

a0

 5

 We now look at how many BDT’s can be constructed with n attributes, under the constraint that no

sensor appears twice in the same path through the BDT. For a system with no sensors or attributes, there are
two possible BDT’s, both having just a terminal in node 0. Designating Nn as the number of distinct BDT’s

that can be formed with n attributes, we have N0=2. For n=1, there are six possible BDT’s. The first and

second have one of the two terminals in node 0. The third through sixth have the sensor in node 0, and have

the four possible combinations of terminals in nodes 1 and 2. Thus N1=6. For n attributes, the number of
BDT’s is given recursively by Nn=2+n(Nn-1)

2. This accounts for the possibility that node 0 holds one of the

two terminals, and the combinations of n possible sensors that could be placed in node 0 with the Nn-1 possible

subtrees that could be placed in node 1 and the Nn-1 possible subtrees that could be placed in node 2. There are
74 possible BDT’s for a two-attribute system, 16430 possible BDT’s for a three-attribute system, and

1,079,779,602 possible BDT’s for a four-attribute system. For five attributes, there are 5x1018 distinct BDT’s.

 The Nn BDT’s of an n-attribute observation system can be exhaustively enumerated with a simple
algorithm (systematically constructing BDT’s from node 0 down through its descendants by sequentially

placing the available sensors or terminals). Random BDT’s can also be generated with a simple algorithm that

constructs BDT’s from node 0 down by selecting sensors or terminals at random from the available set. These

algorithms have both been implemented into Java, and work well for up to three attributes. For four attributes,
there are too many possibilities for practical computation.

 Many BDT’s would not make sensible observation systems. For example, if both children of any

node are identical sub-trees, that node could be eliminated and replaced with one of the child subtrees. This
repaired BDT simply removes an observation that provides no useful information. Another reasonable

constraint is to say that one of the terminals will only appear in left-child nodes, while the other terminal only

appears in right-child nodes. This would be appropriate in systems in which each attribute is related to a
single measure (e.g. belief that the item is bad), and all items are to be classified as good or bad.

4. SELECTION EXPRESSION

 An approach to winnowing out large numbers of unfeasible BDT’s is based on the notion of feasible

selection expressions. This approach enumerates the possible logics by which items are assigned to
categories, applies constraints to eliminate infeasible selection expressions, and then enumerates the various

BDT’s that implement the feasible selection expressions.

 For n attributes, there are 2n distinct input states. A selection expression assigns each of them to either
output category 0 or output category 1. If an expression assigns an input state to category 1, that input state is

said to be selected by the expression. A selection expression can be represented by a 2n bit sequence, where

the bit j gives the assignment for the jth input state. If bit j has a value of one, then input state j is selected by

the expression. If the binary sequence is lined up in rows with the corresponding binary representation of the
input states, the resulting matrix is the truth table representation of the selection expression. As an example,

for a four attribute system that selects those entities for which a0 and a3 both have value 1, or for which a1, a2

and a3 have a value of 1, the truth table given in Table 3 would apply. This selection expression is represented
algebraically as S=a0a3+a1a2a3, where addition signifies disjunction (or) and multiplication signifies

conjunction (and).

 There are 2m distinct truth tables, where m=2n. For 2 attributes, there are four possible input states and
16 possible selection expressions, as delineated in Table 4.

 6

input state, j a3 a2 a1 a0 wj

0=0000 0 0 0 0 0

1=0001 0 0 0 1 0

2=0010 0 0 1 0 0

3=0011 0 0 1 1 0

4=0100 0 1 0 0 0

5=0101 0 1 0 1 0

6=0110 0 1 1 0 0

7=0111 0 1 1 1 0

8=1000 1 0 0 0 0

9=1001 1 0 0 1 1

10=1010 1 0 1 0 0

11=1011 1 0 1 1 1

12=1100 1 1 0 0 0

13=1101 1 1 0 1 1

14=1110 1 1 1 0 1

15=1111 1 1 1 1 1

Table 3. Truth table for the Boolean expression a0a3+a1a2a3. This truth table is represented by w, the binary

sequence 11101010000000002, which is the Boolean equivalent of the decimal integer 59904, and represents one

out of 65536 distinct selection expressions for a four attribute system.

Input States w

a1=1,
a0=1

a1=1,
a0=0

a1=0,
a0=1

a1=0,
a0=0

Selection expression Sw

0=0000 0 0 0 0 never

1=0001 0 0 0 1 ¬a0 and ¬a1

2=0010 0 0 1 0 a0 and ¬a1

3=0011 0 0 1 1 ¬a1

4=0100 0 1 0 0 ¬a0 and a1

5=0101 0 1 0 1 ¬a0

6=0110 0 1 1 0 a0 and ¬a1 or ¬a0 and a1

7=0111 0 1 1 1 ¬a0 or ¬a1

8=1000 1 0 0 0 a0 and a1

9=1001 1 0 0 1 a0 and a1 or ¬a0 and ¬a1

10=1010 1 0 1 0 a0

11=1011 1 0 1 1 a0 or ¬a1

12=1100 1 1 0 0 a1

13=1101 1 1 0 1 ¬a0 or a1

14=1110 1 1 1 0 a0 or a1

15=1111 1 1 1 1 always

Table 4. The sixteen possible selection expressions for a two-attribute system. The input states that a selection

expression assigns to category 1 are those with a 1 entry.

5. INCREASING EXPRESSIONS

 A class of applications exists in which the attributes and sensors are designed so that a high observed

value (i.e. 1, or true, or positive) for any attribute increases the likelihood that the entity belongs to category 1,

while a low observed value makes category 0 more likely. For two input states differing only in the value of a
single attribute, the one where that attribute is true ranks higher than the other. This creates a partial ordering

relationship among the possible input states.

 The highest ranking input state (the state most likely to actually be in category 1) is the one with all
attributes having values of 1 (i.e. being true). Next in rank are the n input states in which all but one attribute

are true. The lowest ranking input state (the state most likely to belong to category 0) is the one in which all

 7

attributes are false. Figure 3 shows the partial ordering relationship for the four possible input states that can

be formed with two attributes. A state ranks above any state below it on the diagram that it is connected to. A
state also ranks above all states that are outranked by any state it outranks. Thus input state 102 outranks 002,

is outranked by 112, and has an indeterminate ranking relationship with 012.

Fig. 3. The 2-D hypercube for two attributes. The input states are shown at vertices, in binary and decimal

representations.

 Figure 4a shows the partial ordering for the 8 possible input states that can be formed with three

attributes. These input states can be arranged on the corners of a cube37.

Fig. 4a. The 3-D hypercube for three attributes.

 Figure 4b shows the partial ordering for the 16 possible input states that can be formed with four

attributes. These input states can be arranged on the corners of a 4-hypercube.

Fig. 4b. The 4-D hypercube, showing the partial ordering for four attributes, with input states in binary and

decimal notation.

 The set of input states that cover or outrank a given input state can be designated with a wildcard

token replacing all 0 values in the binary representation of the state. For example, for the four attribute case,

input state 12 = 11002 is covered by all states designated by 11**2, i.e. {11002, 11012, 11102, 11112} = {12,
13, 14, 15}. Likewise, the set of states covered by a given state can be designated by replacing all 1 values

11

00

10 01

3

0

2 1

101

000

100 001

111

010

110 011 5

0

4 1

7

2

6 3

1101

0100

1100 0101

1111

0110

1110 0111

1001

0000

1000 0001

1011

0010

1010 0011

13

4

12 5

15

6

14 7

9

0

8 1

11

2

10 3

 8

with the wildcard token. Input state 12 = 11002 covers the states **002, i.e. { 11002, 01002, 10002, 00002} =

{12, 8, 4, 0}. The cover set of state j is also known as the mincut38 of state j.
 There is a simple and efficient code implementation, available in Java, C and C++, to determine

whether one state covers another, using only the base 10 index of the state. These languages have a bitwise

and operator (&) that can be applied to integers. For any two non-negative integers i and j, the expression (j &

i) == i is true if and only if j covers i. Thus 15 & 13 == 13, just as 11112 covers 11012.

6. ENUMERATION OF FEASIBLE SELECTION EXPRESSIONS

 If, for every input state selected by an expression, all higher-ranking input states are also selected, that

expression is designated as increasing. This class of expression is also designated in the literature as

“monotonic Boolean functions”39, antichains, and Sperner systems40.

 If an expression depends on every attribute, it is designated as complete. A feasible selection
expression is both complete and increasing.

 The feasible selection expressions can be generated by enumerating those subsets of input states in

which 1) no state in the subset covers or is covered by another in the subset, and 2) every possible input state
either covers or is covered by at least one state in the subset. A feasible selection expression is then given by

the union of the cover sets of each state in the subset satisfying 1) and 2). A recursive algorithm expand

enumerates the feasible selection expressions.

define expand(list of input states s, list of input states r)

for every state j in s

make new rule rn by adding j to r

make new list of states sn, by removing all states in s that cover or are covered by j

if rn is not complete, call expand(sn, rn)

else add rn to ruleList if not already there

 The arguments of expand are s, a list of available input states, and r, a set of input states that are

included in the rule so far. The initial call uses the complete set of input states (the integers from 0 to 2n-1),

and an empty initial rule r. The determination of whether a rule is complete is made by seeing whether every
level 1 input state (those of the form 2 raised to an integer power) are covered by a state in rn. ruleList is an

initially empty list of selection rules.

 This recursive algorithm is found to be much more efficient than a brute force approach, in which all
selection expressions are generated and then tested to determine whether they are complete and increasing.

The algorithm, checkIncreasing, can determine whether a selection expression is increasing. w is a vector of

|w| = m=2n bits, and n is the number of attributes. The function will return a false result for a truth table w if
any input state selected by w is covered by a state that is not selected by w.

define checkIncreasing(w)

for j=0 to |w|-2

if wj=1 then for i = 0 to n-1

if bit i in binary representation of j is 0 and if w
j+2 i

 =0 then return false;

return true;

 Another algorithm, implemented by the function checkComplete, is used to ensure that a selection
expression is complete. Again, w is a vector of |w| = m=2n bits, and n is the number of attributes. The function

will return a false result for a truth table w if the selection expression is independent of one or more attributes.

 9

define checkComplete(w)

for i=0 to n

 dep = false

for j=0 to |w|-2

if bit i in binary representation of j is 0

and if w j w
j+2 i

 then dep = true

if dep = false then return false

return true;

In the brute-force approach, the above algorithms are applied to all integers from 2m-1 to 2m-1, to see which
represent feasible selection expressions. Those from 0 to 2m-1-1 cannot be increasing due to the non-selection

of input state m-1 (i.e. the input state in which all attributes have value 1), which covers all other input states.

 There is a geometric-graphical approach that allows some regularities to be seen in the set of feasible

selection expressions. For the n-attribute case, consider a fully connected graph with n vertices. This graph
defines vertices, edges, faces, solids, and hyper-surfaces of dimension up to n-1. A selection expression can

be represented as a subset of these vertices, edges, etc., as follows. Let us associate each of the n vertices with

an attribute. If a vertex is included in the selection expression, all input states wherein the associated attribute
has value 1 are to be selected (i.e. assigned to category 1). A vertex thus represents a total of 2n-1 of the input

states, in particular the set of states that cover the input state in which the associated attribute has value 1 and

the other n-1 attributes have value 0.
 There are n!/[(n-2)! 2!] edges in the fully connected graph with n vertices. Each edge represents the

subset of input states in which the attributes associated with both endpoints of the edge have value 1. An edge

thus represents 2n-2 input states, which form the cover set of the input state in which the two associated

attributes have value 1 while the other n-2 attributes have value 0.
 The number of hyper-surfaces of dimension d on a fully-connected graph with n vertices is given by

the binomial coefficient B(n,d+1) = n!/[(n-d-1)! (d+1)!]. Counting the null set as a hyper-surface, there are a

total of m=2n hypersurfaces. Every hyper-surface represents an input state and all of the input states that cover
it. Therefore, a selection expression consisting of a subset of the hyper-surfaces will be increasing.

 Some of the hyper-surfaces contain others. A vertex represents a subset of the input states that

includes all of the input states that are represented by any of the n-1 edges that connect that vertex. The same

holds for any face, solid, &c. that connect that vertex. The canonical representation of a selection expression
as a subset of the possible hyper-surfaces will not include any hyper-surface that is contained in another

already in the subset, as that would be redundant. We can now proscribe a way to compose complete,

increasing selection expressions: Begin adding hyper-surfaces to a set, ensuring that no hypersurface is added
if it is contained by a hypersurface already in the set, until all vertices are in the set, whether as individual

vertices, or as part of higher dimensional hypersurfaces.

 For the two-attribute case, there are four possible input states, and 16 possible selection expressions,
as listed in Table 4. The fully connected graph is a line segment, with endpoints 1* and *1. The notation 1*

designates the two input states in which attribute a1 has value 1. The edge itself represents the input state 11,

i.e. both attributes having value 1. There are two subsets of hypersurfaces that follow the above proscription:

the set with both vertices, and the set consisting only of the one edge. The latter represents the selection
expression a0 and a1. The former represents the selection expression a0 or a1.

 For n=3, the fully connected graph is a triangle. There are three vertices, three edges, and one face.

There are five families of feasible selection expressions. The first has three vertices, the second has one vertex
and the opposite edge, the third has two edges, the fourth has three edges, and the last has one face. Within

some families, there are permutations of the attributes that correspond to distinct selection expressions. There

are three ways to select a vertex and the opposite edge. There are three ways to select two edges. There are

thus nine feasible selection expressions in five logical families for three attributes, as follows:

 10

3 points rule 1: 1 2 4 a0+a1+a2

1 point, 1 edge rule 2: 1 6 a0+a2a1
 rule 3: 2 5 a1+a2a0

 rule 4: 3 4 a1a0+a2

2 edges rule 5: 3 5 a1a0+a2a0

 rule 6: 3 6 a1a0 +a2a1
 rule 7: 5 6 a2a0+a2a1

3 edges rule 8: 3 5 6 a1a0+a2a0+a2a1

1 face rule 9: 7 a2a1a0

The input states, which along with their covers give the selection set, are shown with the algebraic

representation for each selection expression.
 For n=4, the fully connected graph is tetrahedral. It has 1 null set, 4 points, 6 edges, 4 triangles, and 1

tetrahedron. We find there are 114 feasible selection expressions (out of the 65536 possible expressions).

These are arranged into 19 logical families. The number of increasing selection expressions of each logical

family are as follows:

1 4 points a0+a1+a2+a3

6 2 points, excluded edge e.g. a0+a1+a2a3
12 1 point, 2 edges e.g. a0+a1a2+ a2a3

4 1 point, opposite triangle e.g. a0+a1a2a3

4 1 point, 3 edges e.g. a0+a1a2+ a2a3+ a1a3
3 2 opposing edges e.g. a1a2+ a0a3

4 3 edges, with common vertex e.g. a0a1+ a0a2+ a0a3

12 3 edge snake e.g. a0a1+ a1a2+ a2a3

15 4 edges e.g. a0a1+ a1a2+ a2a3+ a0a3
6 5 edges e.g. a0a1+ a1a2+ a2a3+ a0a3+ a0a2

1 6 edges a0a1+ a0a2+ a0a3+ a1a2+ a1a3+ a2a3

12 1 triangle, 1 edge e.g. a0a1+a1a2a3
12 1 triangle, 2 edges e.g. a0a1+a0a2+a1a2a3

4 1 triangle, 3 edges e.g. a0a1+ a0a2+a0a3+a1a2a3

6 2 triangles, 1 excluded edge e.g. a0a3+a0a1a2+a1a2a3

6 2 triangles e.g. a0a1a2+a1a2a3
4 3 triangles e.g. a0a1a2+a0a1a3+a0a2a3

1 4 triangles a0a1a2+a1a2a3+a1a2a3+a1a2a3

1 1 tetrahedron a0a1a2a3
114 all combinations

 For the five-attribute case, only 6894 of the 4 billion possible selection expressions are feasible. The
recursive algorithm (implemented in the Java method expand on a dual 1.4GHz Macintosh) enumerates these

feasible selection expressions in 31.7 seconds, while the brute force approach requires 3.6 hours.

 The similar problem of counting the number of monotonic increasing Boolean expressions was first

posed by Dedekind41 42 43 in 1897. The number of feasible expressions for 6,7, & 8 attributes have been
computed and published: 7(10)6, 2(10)9, and 5(10)22, respectively.44 The number of feasible expressions for 9

attributes is unknown. What we generate here is not a count of the number of feasible expressions, but an

enumeration or listing of the feasible expressions.

7. BINARY DECISION TREE IMPLEMENTATION OF SELECTION EXPRESSIONS

 The second part of the problem is to enumerate the combinations and sequences of observations by

which a given selection expression can be implemented. An algorithm to enumerate all the possible BDT’s

that implement a selection expression has been developed. It is a recursive formulation, shown with the

pseudocode enumerateTrees. The recursive function takes two inputs, s and w. s is a list of tokens labeling the

 11

possible sensors (e.g. {0,1,2,3} for n=4 attributes). w is a vector representation of the truth table, where wj=1

if input state j is assigned to category 1, and wj = 0 if input state j is assigned to category 0. For n possible
sensors, the number of items in s is n, and there will be 2n elements of w, indexed from 0 to 2n-1. The

recursive function enumerateTrees returns a list of all binary decision trees that can be formed from the

sensors in the set s, that implement the truth table encapsulated in w.

define enumerateTrees(s, w) returns list of trees

 make an empty list of trees, L

if all w’s are identical, return L

if |s| = 1

make tree T with sensor s0 in node 0

add T to L

return L

else for i=0 to|s|-1

make s’ by removing si from s

make reduced truth tables wyes and wno

N = enumerateTrees(s’, wno)

Y = enumerateTrees(s’, wyes)

if(|N| = |Y| = 0)

Make tree T, with si in node 0

Add T to L

else if(|N| = 0, |Y| > 0)

Make |Y| new trees Tj, with si in node 0 and tree Yj hoisted to node 2 of tree Tj

Add |Y| trees Tj to L

if(|N| > 0, |Y| = 0)

Make noTree.length new trees Tj, with si in node 0 and noTreej hoisted to node 1 of tree Tj

Add noTree.length trees Tj to L

if(|N| > 0, |Y| > 0)

Make |Y| * |N| new trees Tjk, with si in node 0 and every combination of Yj hoisted to node 2 and

Nk hoisted to node 1.

Add trees Tjk to L, unless Yj is identical to Nk

return L.

This recursive function is implemented in about 250 lines of Java code.

 For n=2, s={0,1}, there are 2 complete, increasing selection expressions, represented by the truth tables

{w3=1, w2=0, w1=0, w0=0} and {w3=1, w2=1, w1=1, w0=0}. The first of these represents the selection
expression a0 and a1, while the second represents a0 or a1. The recursive enumeration in the first case

produces a list of 2 alternative BDT’s, as does the second case. The four BDT’s are

1: sensor 0 in node 0, sensor 1 in node 2

2: sensor 1 in node 0, sensor 0 in node 2

3: sensor 0 in node 0, sensor 1 in node 1

4: sensor 1 in node 0, sensor 0 in node 1

BDT 1 implements the selection logic a0 and a1 by observing attribute 0, and only if attribute 0 shows a value

of 1 observing attribute 1. In tree form, BDT’s 1 to 4 are

 12

 a0 a1 a0 a1
 / \ / \ / \ / \
 0 a1 0 a0 a1 1 a0 1
 / \ / \ / \ / \
 0 1 0 1 0 1 0 1
 BDT1 BDT2 BDT3 BDT4

BDT’s 1 and 2 implement the same selection logic, but permute the ordering of the two sensors. The same

can be said for BDT’s 3 and 4.

 For 3 attributes, the 9 feasible selection expressions can be implemented by a total of 60 distinct BDT’s.
For 4 attributes, the 114 feasible selection expressions can be implemented by a total of 11,808 distinct

BDT’s. These results are tabulated in Table 5.

attributes Distinct BDT’s Feasible Selection

Expressions

Feasible BDT’s

2 74 2 4

3 16,430 9 60
4 1,079,779,602 114 11,808

5 5.1018 6894 263,515,920
Table 5. Counts of feasible BDT’s

8. DEMONSTRATION

 The practical application of the enumerated feasible BDT’s is demonstrated by optimizing the

classification scheme for a system with four attributes. Rather than evaluate the billion distinct decision trees

that can be formed with four attribute sensors, the 11,808 feasible decision trees that implement the 114
feasible selection expressions will be evaluated. For a system that requires 5 seconds of computation to

evaluate each configuration, the optimal decision tree can be found in 16 processor-hours, instead of the 171

processor-years that would be required to evaluate all possible decision trees.

8.1 Application System Model
 A simplified but generalizable model is used to compute the fitness of alternative classification

schemes. A stream of items enters the classifier system. The number of items entering the system per day is
designated as q. E is the fraction of these items that have defects, errors, or problems that require them to be

diverted from their normal fate. These category 1 items are designated as bad. The remaining fraction (1-E) of

the items is designated as good. The classification system either clears (assigns to category 0) or flags

(assigns to category 1) each item. Each bad item that is cleared results in a cost of cmiss. Each good item that is
falsely flagged results in a cost of cfalse. The fraction of good items that are flagged is designated F (to denote

false-positive rate), and the fraction of bad items that are flagged is designated D (to denote detection

probability).
 The classification system consists of four sensor types observing four binary attributes, arranged in a

binary decision tree. The nodes of the BDT are indexed as in Fig. 1, with all items entering the system at node

0, the root node. The fraction of bad items entering the system that enter node j is designated bj.

 bj = (number of bad items entering node j)/(number of bad items entering system) (8.1.1)

Similarly, gj is the fraction of good items entering the system that enter node j. Since all items enter the BDT
at node 0, there follows that b0 = g0 = 1.

 The flow of items entering node j is split into four parts:

• fraction fj of the good items trigger and are sent to the right child, node 2j+2,

• fraction 1-fj of the good items don’t trigger and are sent to the left child, node 2j+1,

• fraction dj of the bad items trigger and are sent to the right child, node 2j+2,

 13

• fraction 1-dj of the bad items don’t trigger and are sent to the left child, node 2j+1.

fj and dj are the probabilities for good and bad items respectively to trigger the sensor in node j. Each sensor is

characterized by discrimination power Ki, a threshold setting Ti, and a relative spread factor i. The trigger

probabilities for good and bad items are computed from these parameters via a simple Gaussian thresholding

formulation:

 fi = 0.5 erfc[Ti/ 2] (8.1.2)

 di = 0.5 erfc[(Ti-Ki)/(i 2)] (8.1.3)

 A simple procedure computes the fractions of good and bad items entering the system that enter each
node in the BDT. By evaluating the flow through nodes in sequential order, the flow through the parent of a

node will have already been computed by the time it is needed. The sensor in node j is designated as s[j].

for each attribute i

b0 = g0 = 1 // all good and bad items enter BDT at node 0

F = D = 0 //initialize good and bad flag accumulators

for each node in the BDT, starting with node = 1

 if node does not contain a sensor, go to the next node

 parent = int((node-1)/2)

 =s[node] // the attribute observed in node

 =s[parent] // the attribute observed in node’s parent

 if node is odd //(i.e. a left node)

 gnode = gparent (1-fs[parent])

 bnode = bparent (1-ds[parent])

 else // the node is even (i.e. a right node)

 gnode = gparent fs[parent]

 bnode = bparent ds[parent]

 if right child is a terminal

 F += gnode fs[node]

 D += bnode ds[node]

 go to the next node

The fraction of good items entering the system that are examined by sensor i, designated by Gi, is found by
summing the node fractions gnode over all nodes occupied by sensor i, i.e. for which i=s[node], where the

Kroniker delta notation is used:

 Gi = gnode (i,s[node])
nodes

 (8.1.4)

A similar formulation applies for Bi, the fraction of bad items entering the system that are examined by sensor
i.

8.2 Performance Model
 In general, the cost of operating each sensor includes 1) amortized fixed costs, 2) incremental cost per
observation, plus 3) costs due to delay in the queue that may form at the entrance to the sensor. While it is

straightforward to explicitly model each of these cost factors, for simplicity they can be lumped into a single

cost per observation, ci. The cost of sensor i, per item entering the system, is then

 Ci =(Gi(1-E)+BiE)ci (8.1.5)

 14

The total cost of the classification system per object entering the system is then

 Ctot = Cfalse (1- E) F + Cmiss E (1-D) + i Ci (8.1.6)

The first term gives the cost of false positives per processed item (i.e. type I errors). The second term gives
the cost of false negatives per processed item (i.e. type II errors). The third term gives a summation over each

attribute of the cost per processed item of observing each attribute.

 A two level sub-optimization is applied in the evaluation of each BDT, to obtain the set of threshold
values and number of sensor lanes (trading capital cost against queuing delay) that minimize the cost

function. The computation of fitness is performed in the Java code Sumopod. For a given classification

scheme, the optimization of thresholds and number of lanes takes approximately 5 seconds to compute.

8.3 Test Case
 A test case was created by setting the discriminating powers and cost factors of each of four sensors.

The test case demonstrates how sensors of various capabilities are best combined into an optimized multi-
sensor network. Sensor 0 has good discriminating power and is inexpensive, sensor 1 has low discriminating

power but is inexpensive, sensor 2 has medium discriminating power and intermediate cost, and sensor 3 is

powerful and expensive. The test case parameters are as follows:

Sensor 0: K= 4.37, =1, c=0.25 $/scan

Sensor 1: K= 1.53, =1, c=0.25 $ per scan

Sensor 2: K= 2.9, =1, c=15 $ per scan

Sensor 3: K= 4.6, =1, c=30 $ per scan

The measure of performance is taken as the sensor cost plus miss cost per item when D is 0.815.

 The feasible classification schemes that can be used to integrate the four sensors are given by the
11808 feasible four-attribute BDT’s. The cost function was evaluated for each of the feasible BDT’s. The best

BDT was found to be better than the best manually-generated BDT (the one shown in Fig. 2). The best 100

BDT’s are listed in Table 6. The best 100 BDT’s all were found to implement one of ten similar selection

expressions. These are all of the form a3(a2a1+a2a0+a1a0) + various disjunctions of a1a0, a2a0, a2a1, & a3a0.
Many seemingly diverse BDT’s were found to implement near optimal fitness, although at very differently-

tuned threshold levels. The best BDT is shown in Fig. 5, and two other near-optimal BDT’s are also shown.

 15

{0,1,1,0,2,0,4,3,5,2,6,2,12,3,13,3},
{0,0,1,1,2,1,4,2,5,3,6,2,10,3,13,3},

{0,1,1,0,2,2,4,3,5,0,6,0,12,3,13,3},
{0,0,1,1,2,3,4,2,5,1,10,3,12,2},
{0,1,1,0,2,0,4,3,5,2,6,3,12,3,13,2},

{0,0,1,1,2,1,4,2,5,3,6,3,10,3,13,2},
{0,1,1,0,2,2,4,3,5,0,6,3,12,3,13,0},
{0,0,1,1,2,3,4,2,10,3},

{0,1,1,0,2,0,4,3,5,2,6,3,12,3},
{0,1,1,0,2,2,4,3,5,0,6,3,12,3},
{0,0,1,1,2,2,4,2,5,3,6,1,10,3,13,3},

{0,0,1,1,2,3,4,2,5,2,10,3,12,1},
{0,0,1,1,2,2,4,2,5,3,6,3,10,3,13,1},
{0,1,1,0,2,0,4,3,5,2,12,3},

{0,0,1,1,2,1,4,2,5,3,10,3},
{0,1,1,0,2,2,4,3,5,0,6,0,13,3},
{0,1,1,0,2,2,4,3,5,0,6,3,13,0},

{0,0,1,1,2,3,4,2,5,1,10,3},
{0,1,1,0,2,0,4,2,5,2,6,2,10,3,12,3,13,3},
{0,0,1,1,2,1,4,2,5,2,6,2,10,3,12,3,13,3},

{0,0,1,1,2,2,4,2,5,1,6,1,10,3,12,3,13,3},
{0,1,1,0,2,2,4,2,5,0,6,0,10,3,12,3,13,3},
{0,0,1,1,2,2,4,2,5,3,10,3},

{0,1,1,0,2,2,4,2,5,0,6,0,9,3,12,3,13,3},
{0,1,1,0,2,0,4,2,5,2,6,2,9,3,12,3,13,3},
{0,1,1,0,2,0,4,2,5,2,6,3,9,3,12,3,13,2},

{0,0,1,1,2,1,4,2,5,2,6,3,10,3,11,3,13,2},
{0,1,1,0,2,2,4,2,5,0,6,3,9,3,12,3,13,0},
{0,1,1,0,2,0,4,2,5,2,6,3,10,3,12,3,13,2},

{0,0,1,1,2,1,4,2,5,2,6,3,10,3,12,3,13,2},
{0,1,1,0,2,2,4,2,5,0,6,3,10,3,12,3,13,0},
{0,0,1,1,2,2,4,2,5,1,6,3,10,3,12,3,13,1},

{0,1,1,0,2,0,4,2,5,2,6,3,10,3,12,3},

{0,0,1,1,2,1,4,2,5,2,6,3,10,3,12,3},
{0,1,1,0,2,2,4,3,5,0,6,0,9,2,12,3,13,3},

{0,1,1,0,2,0,4,3,5,2,6,2,9,2,12,3,13,3},
{0,0,1,1,2,1,4,2,5,3,6,2,10,3,11,2,13,3},
{0,0,1,1,2,1,4,2,5,3,6,2,10,3,12,2,13,3},

{0,1,1,0,2,2,4,3,5,0,6,0,10,2,12,3,13,3},
{0,1,1,0,2,0,4,3,5,2,6,2,10,2,12,3,13,3},
{0,0,1,1,2,3,4,2,5,2,10,3},

{0,1,1,0,2,0,4,3,5,2,6,3,9,2,12,3,13,2},
{0,1,1,0,2,2,4,3,5,0,6,3,9,2,12,3,13,0},
{0,1,1,0,2,0,4,3,5,2,6,3,10,2,12,3,13,2},

{0,0,1,1,2,3,4,2,5,1,6,1,10,3,12,2,13,2},
{0,0,1,1,2,1,4,2,5,3,6,3,10,3,12,2,13,2},
{0,1,1,0,2,2,4,3,5,0,6,3,10,2,12,3,13,0},

{0,0,1,1,2,3,4,2,5,1,6,2,10,3,12,2,13,1},
{0,0,1,1,2,3,4,2,6,1,10,3,13,2},
{0,0,1,1,2,3,4,2,6,2,10,3,13,1},

{0,0,1,1,2,1,4,2,5,3,6,3,10,3,12,2},
{0,1,1,0,2,0,4,3,5,2,6,3,10,2,12,3},
{0,1,1,0,2,2,4,2,5,0,6,3,10,3,12,3},

{0,0,1,1,2,2,4,2,5,1,6,3,10,3,12,3},
{0,1,1,0,2,2,4,3,5,0,6,3,10,2,12,3},
{0,0,1,1,2,2,4,2,5,1,6,3,10,3,11,3,13,1},

{0,0,1,1,2,2,4,2,5,3,6,1,10,3,11,1,13,3},
{0,1,1,0,2,0,4,2,5,2,9,3,12,3},
{0,0,1,1,2,1,4,2,5,2,10,3,11,3},

{0,0,1,1,2,2,4,2,5,3,6,1,10,3,12,1,13,3},
{0,0,1,1,2,3,4,2,5,2,6,1,10,3,12,1,13,2},
{0,0,1,1,2,2,4,2,5,3,6,3,10,3,12,1,13,1},

{0,0,1,1,2,3,4,2,5,2,6,2,10,3,12,1,13,1},
{0,0,1,1,2,1,4,2,5,3,10,3,11,2},
{0,1,1,0,2,0,4,3,5,2,9,2,12,3},

{0,0,1,1,2,2,4,2,5,1,10,3,11,3},

{0,1,1,0,2,2,4,2,5,0,6,0,9,3,13,3},
{0,1,1,0,2,2,4,2,5,0,6,3,9,3,13,0},

{0,1,1,0,2,2,4,3,5,0,6,0,9,2,13,3},
{0,0,1,1,2,3,4,2,5,1,10,3,11,2},
{0,1,1,0,2,2,4,3,5,0,6,3,9,2,13,0},

{0,0,1,1,2,2,4,2,5,3,10,3,11,1},
{0,0,1,1,2,3,4,2,5,2,10,3,11,1},
{0,0,1,1,2,2,4,2,5,1,10,3,12,3},

{0,0,1,1,2,1,4,2,5,2,6,2,10,3,13,3},
{0,1,1,0,2,0,4,2,5,2,6,2,12,3,13,3},
{0,1,1,0,2,2,4,2,5,0,6,0,12,3,13,3},

{0,0,1,1,2,1,4,2,5,2,6,3,10,3,13,2},
{0,1,1,0,2,0,4,2,5,2,6,3,12,3,13,2},
{0,1,1,0,2,2,4,2,5,0,6,3,12,3,13,0},

{0,0,1,1,2,2,4,2,5,3,6,3,10,3,12,1},
{0,0,1,1,2,1,4,2,5,2,10,3,12,3},
{0,1,1,0,2,0,4,2,5,2,10,3,12,3},

{0,1,1,0,2,0,4,3,5,2,10,2,12,3},
{0,0,1,1,2,1,4,2,5,3,10,3,12,2},
{0,1,1,0,2,2,4,2,5,0,6,0,10,3,13,3},

{0,0,1,1,2,2,4,2,5,1,6,1,10,3,13,3},
{0,1,1,0,2,2,4,3,5,0,6,0,10,2,13,3},
{0,1,1,0,2,2,4,2,5,0,6,3,10,3,13,0},

{0,0,1,1,2,2,4,2,5,1,6,3,10,3,13,1},
{0,1,1,0,2,2,4,3,5,0,6,3,10,2,13,0},
{0,0,1,1,2,3,4,2,5,1,6,1,10,3,13,2},

{0,0,1,1,2,3,4,2,5,1,6,2,10,3,13,1},
{0,0,1,1,2,2,4,2,5,3,10,3,12,1},
{0,0,1,1,2,3,4,2,5,2,6,1,10,3,13,2},

{0,0,1,1,2,3,4,2,5,2,6,2,10,3,13,1},
{0,1,1,0,2,0,4,2,5,2,12,3},
{0,0,1,1,2,1,4,2,5,2,10,3},

{0,0,1,1,2,2,4,2,5,1,10,3},
{0,1,1,0,2,2,4,2,5,0,6,0,13,3}

Table 6. The 100 best BDT’s. The list notation is a sequence of pairs of integers, the first representing a node

index and the second representing the sensor occupying that node

Fig. 5. The optimal BDT (left) and two near-optimal BDT’s.

9. CONCLUSION

 Although the mathematics for working with Boolean expressions and binary decision trees are well

established, the explosive growth of the number of possible BDT’s with even four or five attributes has made

enumeration and subsequent optimization of observation logics problematic. An approach has been developed
to split this problem into two parts: enumeration of increasing selection expressions, followed by enumeration

of BDT’s that implement a selection logic. Algorithms have been developed and presented for both tasks. For

four attribute systems, the 114 feasible selection expressions obtained by this algorithm are described. The
BDT enumeration algorithm generated 11808 different BDT’s, which represent all the different classification

schemes that implement the feasible selection expressions. The best 100 of 11,808 feasible BDT’s appear

dissimilar, exhibiting very different branching patterns and sensor orderings. Nevertheless, all 100 implement

0 1

0

a1

a3

0 1 0 1

0 a3 a3 1

a2

a1

a2

a0

0

a
1

0

a
3

1

a0

0 1

0 a3

a2
0

a
0

0 1 0 1

0 a3 a3 1

a
2

a
0

a
2

a1

0 1

0 a3

a
2

 16

a handful of closely related selection expressions. This demonstrates the efficiency of the approach of

winnowing the billion plus BDT’s into families of feasible selection expressions.
 For five attribute systems, the feasible selection expression algorithm enumerates 6894 feasible

selection expressions. These can be used for the application-dependent process of optimizing the observation

logic used in classification or diagnosis.

10. REFERENCE

1 G. Boole, An Investigation Of The Laws Of Thought On Which Are Founded The Mathematical Theories Of

Logic And Probabilities, New York, Dover (1854).

2 S. Minato, Arithmetic Boolean Expression Manipulator Using BDDs, Formal Methods In System Design,

V.10, No.2-3 (Apr-May 1997) pp. 221-242.

3 J. C. Rau, Y. M Chen, S. C. Chang, A Compact Factored Form For A Boolean Function, ISCAS 2000:

IEEE International Symposium On Circuits And Systems - Proceedings, Vol II : Emerging Technologies For
The 21st Century (2000) pp. 317-320.

4 E. Toman, J. Tomanova, Some Estimates Of The Complexity Of Disjunctive Normal Forms Of A Random

Boolean Function, Computers And Artificial Intelligence, V.10, No.4 (1991) pp. 327-340.

5 D. Lee, A. S. Boujarwah, M. A. Tapia, A Heuristic Method For Boolean Function Reduction, International

Journal Of Electronics, V.74, No.1 (Jan 1993) pp.73-92.

6 N. Pippenger, The Shortest Disjunctive Normal Form Of A Random Boolean Function, Random Structures
& Algorithms, V.22, No.2 (Mar 2003) pp.161-186.

7 H. R. Andersen, H. Hulgaard, Boolean Expression Diagrams, Information and Computation, V.179, No.2

(Dec 15 2002) pp.194-212.

8 R. E. Bryant, Graph-Based Algorithms For Boolean Function Manipulation, IEEE Transactions On
Computers, V.35, No.8 (1986) pp.677-691.

9 K. Amano, A. Maruoka, On Learning Monotone Boolean Functions Under The Uniform Distribution,

Lecture Notes In Artificial Intelligence, V.2533 (2002)P.57-68.

10 S. N. Sanchez, E. Triantaphyllou, J. H. Chen, T. W. Liao, An Incremental Learning Algorithm For

Constructing Boolean Functions From Positive And Negative Examples, Computers & Operations Research,

V.29, No.12 (Oct 2002) pp.1677-1700.

11 P. G. Qian, A. Maruoka, Learning Monotone Boolean Functions By Uniformly Distributed Examples,
SIAM Journal on Computing, V.21, No.3 (Jun 1992) pp.587-599.

12 A. Blum, C. Burch, J. Langford, On Learning Monotone Boolean Functions, Annual Symposium On

Foundations Of Computer Science (1998) pp.408-415.

13 P. Hammer, A. Kogan, U. G. Rothblum, Evaluation, Strength, And Relevance Of Variables Of Boolean

Functions, SIAM Journal on Discrete Mathematics, V.13, No.3 (2000) pp.302-312.

14 W. Millan, A. Clark, E. Dawson, Boolean Function Design Using Hill Climbing Methods, Lecture Notes In
Computer Science, V.1587 (1999) pp.1-11.

15 E. Triantaphyllou, A. L. Soyster, An Approach To Guided Learning Of Boolean Functions, Mathematical

and Computer Modelling;; V.23, No.3 (Feb 1996) P.69-86.

16 J. Feldman, A Catalog Of Boolean Concepts, Journal of Mathematical Psychology, V.47, No.1, (Feb 2003)
pp.75-89.

